
TinyMT Pseudo Random Number Generator for Erlang

Kenji Rikitake
Institute for Information Management and Communication (IIMC), Kyoto University

kenji.rikitake@acm.org

Abstract
This paper is a case study of implementing Tiny Mersenne Twister
(TinyMT) pseudo random number generator (PRNG) for Erlang.
TinyMT has a longer generation period (2127 − 1) than the stock
implementation of Erlang/OTP random module. TinyMT can gen-
erate multiple independent number streams by choosing different
generation parameters, which is suitable for parallel generation.

Our test results of the pure Erlang implementation show the
execution time of RNG generating integers with TinyMT is ap-
proximately two to six times slower of that with the stock random
module. Additional implementation with Native Interface Func-
tions (NIFs) improved the execution speed to approximately three
times as faster than that of the random module. The results sug-
gest TinyMT will be a good candidate as an alternative PRNG for
Erlang, regarding the increased period of the RNG and the benefit
of generating parallel independent random number streams.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.3.2 [Programming Lan-
guages]: Language Classifications—Erlang; G.3 [Probability and
Statistics]: Random Number Generation

General Terms Algorithms, Performance

Keywords Erlang, Pseudo Random Number Generator, Mersenne
Twister, TinyMT

1. Introduction
Random number generators (RNGs) is an essential component of
modern programming languages, providing the necessary random-
ness required for generating unpredictable results. In this paper, we
focus on Pseudo RNGs (PRNGs), which are generated through
computational algorithms. We will exclude discussing crypto-
graphic safety of each PRNG in this paper.

PRNG algorithms for massively parallel execution environ-
ments are of active research, for both the quality and performance
aspects, with the details as follows:

Speed Large-scale simulation programs demand fast random num-
ber generation, as the execution speed increases.

Length of period Period of each PRNG should be long enough
to guarantee the randomness. The longer one is always better
than the shorter one, if the other characteristics are not largely
affected.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © 2012 ACM 978-1-4503-1575-3/12/09. This is the author’s version of
the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in the proceedings of Erlang’12
September 14, 2012, Copenhagen, Denmark, DOI: http://dx.doi.org/10.1145/
2364489.2364504

Size of internal state High-speed memory is expensive, especially
in cache-dependent architectures which is common among
modern computers. Reducing the overhead time of copying
the state is also essential for a fast RNG.

Concurrent/parallel generation Capability of generating non-
predictable and independent multiple sequences for concur-
rent or parallel execution from the same algorithm is essential.
Making an RNG as a shared state between multiple processes
or threads should be avoided as possible since the execution
speed of RNG will restrict the speed of all the related processes
or threads.

The stock random module of Erlang/OTP uses an algorithm
called AS183 [1], which has a short period length of ∼ 243 [2].
While the internal state size is small (three 15-bit integers), it does
not have the capability of generating multiple independent multiple
sequences.

This paper is a case study of addressing implementation of
PRNGs for Erlang which can maximize the efficiency at a mas-
sive parallel execution environment. In this paper, we present an
Erlang implementation of algorithm called Tiny Mersenne Twister
(TinyMT) [17], called tinymt-erlang, as an alternative to our pre-
vious SIMD-oriented Fast Mersenne Twister (SFMT) [15] imple-
mentation for Erlang.

An outline of this paper’s topics is as follows:

• implementation issues of SFMT for Erlang (Section 2);

• the goals and implementation details of tinymt-erlang (Sec-
tion 3);

• performance test results and evaluation of tinymt-erlang and
comparison with the random module (Section 4);

• related work (Section 5); and

• concluding remarks (Section 6).

2. Implementation issues of sfmt-erlang
We present an Erlang PRNG implementation of SFMT called sfmt-
erlang [13]. The goals of the implementation are to provide a
modern and well-known PRNG for Erlang which is suitable for
large-scale simulation, while retaining the speed fast enough so that
the users would see the incentives to choose it. MT has been chosen
among open source language systems such as Python [11] and
R [12], not only because of the RNG characteristics, but also due
to the choice of the BSD license [19], which allows the proprietary
and commercial use of the by-products. One of the real-world usage
examples of sfmt-erlang is for an Erlang testing tool PropEr [10];
users can choose which PRNG to use between the random module
and sfmt-erlang [21] at the tool building.

SFMT, however, has its own issues which should be solved as
an RNG for concurrent/parallel execution environment. We have
found that SFMT requires a batch generation of random numbers



at once which fills in the internal state table, and that the execution
time of the batch generation is proportional to the internal state
table length. Using a NIF means blocking a CPU core of the Erlang
virtual machine (BEAM) while the execution, so the execution time
of the batch generation should be considered to avoid degrading the
performance of BEAM by causing jitter on the scheduling activity.
During the development of sfmt-erlang, we conclude that the period
length of 219937−1 gives the best trade-off between the period length
and the performance [13], which keeps the execution time of each
batch generation ≤ 50µs.

Our implementation also has the following new issues which
shows that sfmt-erlang is not suitable as a direct replacement of the
random module:

• The internal state data are large (2496 bytes for the period of
219937−1) and have to be placed into the shared heap of BEAM.

• Only single sequence can be generated from the same piece of
code. The users can choose multiple generation parameters and
theoretically dynamic creation of the parameters is possible [8],
but practically it is too slow for a long period due to the observa-
tion that average CPU time to find each parameter set increases
exponentially to the exponent p where the generation period is
2p − 1 [8, Table 2].

• The algorithm is much slower without NIFs, especially when
generating a set of random numbers at once. 624 random num-
bers have to be generated sequentially at once for the period of
219937 − 1.

• The usage of NIFs should not be mandated if the code is pro-
vided as a general library for multiple operating systems, since
maintaining the NIFs for the Windows environment is far more
difficult due to the non-availability of the C compilers. One of
the users of sfmt-erlang requested us to release and support the
pure Erlang implementation of SFMT since it would not crash
BEAM [4]. We accepted the request and now support the pure
Erlang code which is functionally equivalent to the NIF code.

3. TinyMT implementation
3.1 TinyMT algorithm

TinyMT is a variant of Mersenne Twister (MT) [9] proposed by
Saito and Matsumoto [16], specifically designed for a small mem-
ory footprint. On TinyMT, the users can generate multiple indepen-
dent sequences when choosing different sequence parameter sets
with the Dynamic Creator (DC) [8]. The seed jumping function,
which calculates the internal state of TinyMT after an arbitrary
steps of the recursive state transitions, is also provided to make
multiple non-overlapping sequences from the same sequence pa-
rameter sets. TinyMT is licensed under the BSD License as well as
the other MT variants.

TinyMT is a combination of two different functions: the state
transition function and the output function. Two different output
functions with 32-bit and 64-bit tempering parameters are pro-
posed. In this paper, we focus on the algorithm with the 32-bit tem-
pering parameter.

The size of TinyMT internal state with generation parameters
for the 32-bit tempering parameter is 28 bytes including the 127-
bit internal state and three 32-bit generation parameters. The pe-
riod of each generated number sequences is 2127 − 1. Saito and
Matsumoto [16] showed that TinyMT passed the BigCrush tests
of TestU01 [6], and estimated that the total number of generation
parameter sets which could be generated by the TinyMTDC, a vari-
ation of MT DC algorithm for TinyMT, is ∼ 258 regarding the num-
ber of computed irreducible polynomials. TinyMTDC is written in
C++ and depends on Number Theory Library (NTL) [18].

%% Internal state definition
-type uint32() :: 0..16#ffffffff.
-record(intstate32,

{status0 :: uint32(), status1 :: uint32(),
status2 :: uint32(), status3 :: uint32(),
mat1 :: uint32(), mat2 :: uint32(),
tmat :: uint32()}).

-define(TINYMT32_SH0, 1).
-define(TINYMT32_SH1, 10).
-define(TINYMT32_SH8, 8).
-define(TINYMT32_MASK, 16#7fffffff).
-define(TINYMT32_UINT32, 16#ffffffff).

%% Initial internal state and tempering parameters
-spec seed0() -> #intstate32{}.
seed0() ->

#intstate32{
status0 = 297425621, status1 = 2108342699,
status2 = 4290625991, status3 = 2232209075,
mat1 = 2406486510, mat2 = 4235788063,
tmat = 932445695}.

%% Computing internal state
-spec next_state(#intstate32{}) -> #intstate32{}.
next_state(R) ->

Y0 = R#intstate32.status3,
X0 = (R#intstate32.status0 band ?TINYMT32_MASK)

bxor R#intstate32.status1
bxor R#intstate32.status2,

X1 = (X0 bxor (X0 bsl ?TINYMT32_SH0))
band ?TINYMT32_UINT32,

Y1 = Y0 bxor (Y0 bsr ?TINYMT32_SH0) bxor X1,
S0 = R#intstate32.status1,
S10 = R#intstate32.status2,
S20 = (X1 bxor (Y1 bsl ?TINYMT32_SH1))

band ?TINYMT32_UINT32,
S3 = Y1,
Y1M = (-(Y1 band 1)) band ?TINYMT32_UINT32,
S1 = S10 bxor (R#intstate32.mat1 band Y1M),
S2 = S20 bxor (R#intstate32.mat2 band Y1M),
R#intstate32{status0 = S0, status1 = S1,

status2 = S2, status3 = S3}.

%% Outputting a 32-bit integer from the internal state
-spec temper(#intstate32{}) -> uint32().
temper(R) ->

T0 = R#intstate32.status3,
T1 = (R#intstate32.status0 +

(R#intstate32.status2 bsr ?TINYMT32_SH8))
band ?TINYMT32_UINT32,

T2 = T0 bxor T1,
T1M = (-(T1 band 1)) band ?TINYMT32_UINT32,
T2 bxor (R#intstate32.tmat band T1M).

Figure 1. TinyMT main function definition in Erlang.

We assume that the characteristics of TinyMT suggest:

• the internal state size is smaller than SFMT, so the internal state
is faster to be moved around between Erlang functions;

• multiple sequences can be easily generated from the same piece
of code by modifying the generation parameters; and

• the algorithm is inherently faster than SFMT and will be suit-
able for the implementation with pure Erlang code.

3.2 TinyMT implementation in pure Erlang

The design goals of our TinyMT implementation on Erlang are as
follows:

• running fast enough to run as a pure Erlang piece of code;



Function name Description
next_state/1 Performs a state transition from a given

internal state with a given set of gener-
ation parameters

temper/1 Outputs a 32-bit integer random num-
ber of [0, 232 − 1] range from a given
internal state

temper_float/1 Outputs a float random number of [0, 1)
range from a given internal state

uniform/{0,1} Generates an integer random number of
[1, N] range for a given positive integer
N (compatible with the random mod-
ule)

uniform_s/{1,2} Generate a float random number (com-
patible with the random module)

(All above functions are provided in both pure Erlang and as
NIFs)

Table 1. List of tinymt-erlang major exported functions.

• retaining readability while optimized for the speed; and

• providing full compatibility functions to the random module, so
that the implementation can be used as a drop-in replacement.

Table 1 shows a list of tinymt-erlang major exported functions
referred in this paper. Figure 1 shows the Erlang code of the 32-bit
version of the TinyMT algorithm. The following is a list of how
this example code is designed:

• This example code does not use any floating point calculation or
branching with Erlang case expression for higher performance.

• The state and generation parameters are all inside the record
#intstate32{}.

• Function seed0/0 represents an example set of the initial state
and generation parameters.

• Function next_state/1 performs the recursive state transition
of the internal state.

• Function temper/1 outputs a 32-bit random number from the
internal state with the tempering matrix. We also provide the
function temper_float/1 to output a float random number.

• We should note that the state transition and the output func-
tions are independent with each other; this means the functions
next_state/1 and temper/1 should be executed one after the
other to generate an output and to forward the internal state.

We also provide the seeding functions as specified in the
TinyMT reference C source code [17], which employs similar in-
ternal state initialization function to the code of sfmt-erlang.

We added the following compatibility functions as specified in
the random module of Erlang/OTP:

• generating float random numbers of [0, 1) (uniform/0 and
uniform_s/1);

• generating integer random numbers within the range of [1,N]
for a given positive integer N (uniform/1 and uniform_s/2);

• saving the internal state and generation parameters in the pro-
cess dictionary without explicitly holding the internal state as a
variable (uniform/0 and uniform/1); and

• seeding functions using the process dictionary, including the
one which initializes the seed with three integer arguments and
with a tuple of three integer elements (seed0/0, seed/{0,1,3}).

Total execution time of 106 executions [ms]
function name laurel minimax reseaux

Without HiPE
random:uniform_s/1 504 367 2499
random:uniform_s/2 506 366 2494
tinymt32:uniform_s/1 418 320 7273
tinymt32:uniform_s/2 542 349 8156

With HiPE o3 option
random:uniform_s/1 458 390 2414
random:uniform_s/2 456 392 2406
tinymt32:uniform_s/1 132 125 5806
tinymt32:uniform_s/2 150 147 6550
(measured by the difference of statistics(runtime), with
pure Erlang functions without NIFs.)

Table 2. Time comparison of total execution time by wall clocks
for the random number generation of 106 integers (uniform_s/1)
and floats (uniform_s/2).

For the output functions of ranged integers of [1,N], we guar-
antee all numbers between the range will appear in the same prob-
ability, by applying the following algorithm:

a) Let R be a 32-bit random integer in [0, 232 − 1], obtained as a
return value of function temper/1;

b) Compute Q where 0 = Q mod N, and 0 ≤ (232 − Q) ≤ (N − 1)
(i.e., Q is the closest multiple of N to 232);

c) If R > Q then try a) again; else compute the result O ∈ [1,N]
where O = (R mod N) + 1.

4. Test results and evaluation
4.1 Performance test results

We conducted a performance comparison test between random and
tinymt-erlang modules with the following three execution environ-
ments, all running Erlang/OTP R15B01 1 and the stock GNU C
compilers 2.

laurel Intel Xeon E5-2670 dual-core CPU ×8 (16 CPU cores),
2.6GHz CPU clock, OS: RedHat Enterprise Linux 6 of x86_64
architecture3.

minimax Intel Core i5-2410M quad-core CPU, 2.3GHz CPU
clock, OS: FreeBSD/amd64 9.0-STABLE; and

reseaux Intel Atom N270 dual-core CPU, 1.6GHz CPU clock, OS:
FreeBSD/i386 8.3-RELEASE.

Table 2 shows the test results of each function call between
the 32-bit TinyMT (tinymt32) and stock random modules. We ob-
serve that TinyMT functions are faster than the stock functions in
the overall wall-clock time for generating 106 numbers on 64-bit
(Linux/x86_64 and FreeBSD/amd64) architectures, while TinyMT
functions are 3 ∼ 4 times slower than the stock functions on 32-bit
(FreeBSD/i386).

We have also tested tinymt32 modules with HiPE option o3 en-
abled on all the three systems. We have found that the overall exe-
cution speed measured from the wall-clock time gets faster to those
of the non-HiPE version at the rates of ×1.25 on FreeBSD/i386 and
×2.4 ∼ 3.6 on Linux/x86_64 and FreeBSD/amd64.

1 With �enable-hipe and �disable-native-libs compilation options.
2 gcc 4.2.1 for FreeBSD (minimax/reseaux), gcc 4.4.6 for laurel.
3 On Kyoto University ACCMS Supercomputer System B cluster; the test
programs were executed from the batch queuing system to assign individual
run-time nodes to reduce the interference of other running programs.



Accumulated execution time of 1000 executions [ms]
function name avg (ratio) min max
random:uniform_s/1 1.18 (1.00) 1.01 1.23
random:uniform_s/2 3.44 (2.92) 3.01 3.56
tinymt32:uniform_s/1 7.32 (6.20) 7.01 7.91
tinymt32:uniform_s/2 6.50 (5.51) 6.01 6.83
tinymt32_nif:uniform_s/1 1.27 (1.08) 1.00 1.51
tinymt32_nif:uniform_s/2 1.09 (0.92) 1.00 1.14
(measured by fprof with Erlang R15B01 without HiPE at the
batch execution nodes of laurel.)

Table 3. Accumulated time comparison of per-call execution time
for the random number generation of 106 integers (uniform_s/1)
and floats (uniform_s/2).

-spec uniform_s(#intstate32{}) ->
{float(), #intstate32{}}.

%% 0.0 <= value < 1.0
uniform_s(R0) ->

R1 = next_state(R0),
{temper_float(R1), R1}.

Figure 2. Definition of uniform_s/1 in Erlang.

After the detailed profiling with the fprof facility of Erlang/OTP
(see Table 3, however, we observe the accumulated 4 execution
time of each tinymt32 function measured by fprof test tool of
Erlang/OTP takes 2 ∼ 6 times of that with the stock random
module.

4.2 NIF implementation for TinyMT

We decide to make a NIF implementation of TinyMT called
tinymt32_nif with the same function set of tinymt32 as listed in
Table 1, according to the following observations:

• Function calls from BEAM to NIFs have the own overhead time
and the number of calls should be minimized, especially when
each function does not take more time to execute. For example,
merging sequential calls of next_state/1 and temper/1 in-
side uniform_s/1 roughly cut the per-function execution time
in half, since the two functions have to be executed together for
generating a new output and updating the internal state (Fig. 2).

• 32-bit integer operations will be much efficiently implemented
in C than in Erlang. We observed 32-bit integer operation on
BEAM became slow when the BEAM runs on a 32-bit archi-
tecture such as i386 (See Table 2). Erlang Efficiency Guide [3,
Section 10.1] tells the 32-bit BEAM only accepts 28-bit inte-
gers as the Small Integers which fit in a single word; integers re-
quired more bits are stored and computed as Big Integers. This
problem does not occur on the 64-bit architecture BEAM.

• NIF implementation is only effective for the functions called
many times. We decided to leave the seeding and initialization
functions of TinyMT as the pure Erlang code.

Table 3 shows the test results of each function calls between the
32-bit TinyMT (tinymt32, tinymt32_nif ) and stock random mod-
ules. We consider the test results are a logical consequence regard-
ing the difference of the complexity of algorithm between TinyMT
and AS183. We also observe the similar behavior under testing on
minimax and reseaux execution environments, though the accu-
mulated time results under FreeBSD interactive execution environ-

4 Shown as ACC time in the fprof results.

random sfmt-erlang tinymt-erlang
Algorithm

AS183 SFMT TinyMT
RNG generation period

∼ 243 219937 − 1 2127 − 1
Internal state in bits

45 19968 (624 × 32) 223 (including 96 for
the generation parame-
ters)

Multiple generation parameters
No Yes (static only) Yes (dynamic)

Recompilation required TinyMTDC available
Accumulated time ratio of uniform_s/1 at laurel

1.00 5.88 (in pure Erlang) 6.20 (in pure Erlang)
0.61 (with NIFs) 0.93 (with NIFs)

Table 4. Comparison of specification and test results between ran-
dom, sfmt-erlang, and tinymt-erlang implementations.

ments do not converge well as they did in a Linux batch execution
environment, presumably due to the difference of OS scheduling
and external disturbance by other interactive jobs.

We should note that on sfmt-erlang the batch generation of the
random number by gen_rand_all/1 took ∼ 2.5 [ms/1000 execs],
and the conversion between the NIF Erlang binary format and
the list format of the internal state by intstate_to_list_max/2
took ∼ 5.0 [ms/1000 execs] in laurel environment. These numbers
are larger than those of tinymt-erlang, which is ≤ 1.51 [ms/1000
execs].

4.3 Evaluation and discussions

Table 4 shows a list of comparison between Erlang PRNG imple-
mentations discussed in this paper. The list suggests the following
characteristics:

• For uniform_s/1 in pure Erlang, sfmt-erlang and tinymt-
erlang were both ∼ 6 times slower than the random module.

• For uniform_s/1 with NIFs, sfmt-erlang was ×1.52 faster
than tinymt-erlang, based on the average execution time. This
is a logical consequence considering the fact that the batch
generation of multiple random numbers as a list is performed in
sfmt-erlang, while on tinymt-erlang only one random number
is generated for each function call.

• Introducing the NIFs made the code execution speed 7 ∼ 10
faster than the base pure Erlang code running on the BEAM
interpreter.

Table 2 suggests HiPE compilation is effective on reducing
overall execution time. We think this is a logical consequence
because the TinyMT algorithm largely depends on bit-manipulating
instructions [5, 7].

Two out of three initial assumptions about the characteristics
of TinyMT at Section 3.1 are proven false, comparing the perfor-
mance test results of sfmt-erlang and tinymt-erlang:

• The internal state size is mostly irrelevant to the performance.

• While TinyMT is inherently simpler than SFMT, that does not
necessarily mean TinyMT is faster for Erlang. We think this is
due to the execution overhead time of each function in BEAM.

On the other hand, the performance test results also suggest
that both the pure Erlang and the NIF versions of sfmt-erlang and
tinymt-erlang have roughly the same execution time and equally
useful. For an application which requires a very long period and no



concurrent/parallel random number generation, sfmt-erlang is the
choice.

For an application which requires multiple independent streams
for concurrent/parallel processes, however, tinymt-erlang still has
the advantage to sfmt-erlang of being able to guarantee the gen-
eration of the independent streams simply by choosing different
sequence parameter sets for each stream and/or applying the seed
jumping function for the same sequence parameter for each stream
so that each stream will not overlap with each other. Using inde-
pendent pre-computed sequence parameters 5 for each CPU core or
Erlang process will automate the procedure of assignment of the
sequence parameters while retaining the reproducibility of mathe-
matical simulations and random number generation speed by each
CPU core or Erlang process.

5. Related work
Saito and Matsumoto [14] publish Mersenne Twister for Graphic
Processor (MTGP), an implementation of MT for GPU CUDA
environment. They also compare MTGP and TinyMT at a GPU
environment and showed TinyMT takes ×1.07 execution time than
that of MTGP, though MTGP fails on some tests of TestU01.

We conducted generating 228 sets of TinyMT generation param-
eters with TinyMTDC on both 32-bit and 64-bit tempering parame-
ters. We performed the computation on Kyoto University ACCMS
Supercomputer Thin cluster 6 with two nodes of 32 CPU cores in
total. Each core was assigned independent computation space to
maximize the efficiency of the parallel execution. The total com-
putation time was ∼ 32 days, where the computation time ratio
between the 32-bit and 64-bit tempering algorithms was 1:5. The
result showed 18 ∼ 19 generation parameter sets with 32-bit tem-
pering parameters were computed per second for each core, which
is roughly equal to the results of Saito and Matsumoto [16].

Wichmann-Hill 2006 algorithm [22] is designed as the succeed-
ing algorithm to AS183. The algorithm has the internal state of four
31-bit integers, and the generation period is ∼ 2120. The algorithm
also has a seed generation method for generating non-overlapping
random number sequences in parallel, though the proof of output
independency has not been given as firm as the one for TinyMT.
Truog [20] implemented a Big Integer version of this algorithm for
Erlang by directly representing the internal state as a 124-bit inte-
ger.

6. Conclusion and future works
We have presented tinymt-erlang, an implementation of TinyMT
PRNG for Erlang and the test results in pure Erlang code. The re-
sults suggest TinyMT will be a good candidate as an alternative
PRNG for Erlang as well as sfmt-erlang is, regarding the increased
period of the RNG and the benefit of generating parallel indepen-
dent random number streams. The performance issues of TinyMT
can be practically solved by assigning multiple CPU cores for the
PRNGs and implementing NIFs for batch generation of multiple
random numbers.

We plan the following future works for tinymt-erlang:

Performance improvement More execution speed improvement
by applying NIFs for batch generation of multiple random num-

5 As we describe in Section 5, we have computed 228 � 2.68 × 108 sets of
the sequence parameters for TinyMT, which is plausibly sufficiently large
for the cases where the number of CPU cores are no more than 107.
6 The Thin cluster had the following execution environments for each node:
AMD Opteron 8350 ×4 (16 CPU cores), 2.3GHz CPU clock, RedHat
Enterprise Linux AS V4 of x86_64 architecture. TinyMTDC was compiled
by gcc 4.4.6 and NTL was compiled by gcc 3.4.6. The cluster was running
until March 2012 and replaced by the laurel cluster in May 2012.

bers. Since batch generation will consume more time in the
NIFs, the trade-off between the speed improvement and the ab-
solute execution time of each NIF should be considered.

Multiple generation parameters Providing functions for supply-
ing the sequence generation parameters, either from a pre-
computed list or calling an external DC program. Supplying
affordable number of the parameter sets is practical for applica-
tions which do not require massive number of sets (< 104). The
speed of TinyMTDC is ∼ 19 sets per second on a 64-bit server-
class computer such as laurel, and the code will not be easily
translated into Erlang while preserving the execution speed, so
calling TinyMTDC C++ code through an Erlang port will be a
feasible solution.

Seed jumping Providing functions for the seed jumping, either by
calling an external program, or as an Erlang piece of code. Seed
jumping is useful when the number of usable generation param-
eter sets is limited. We consider calling a seed jumping program
written in C through an Erlang port will be a more feasible solu-
tion than writing it in Erlang and the NIFs, regarding the com-
plexity of the seed jumping algorithm.

Source code availability
The source code and documentation of tinymt-erlang is available at
https://github.com/jj1bdx/tinymt-erlang/ on GitHub. It
is provided under the BSD License.

Acknowledgments
We thank Mutsuo Saito for his constructive comments to the devel-
opment of the tinymt-erlang software. We also acknowledge feed-
back from anonymous reviewers.

We used the supercomputer service provided by Academic Cen-
ter for Computing and Media Studies (ACCMS), Kyoto University
for writing this paper.

References
[1] B. A. Wichmann and I. D. Hill. Algorithm AS 183: An Efficient and

Portable Pseudo-Random Number Generator. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 31(2):188–190, 1982.

[2] B. A. Wichmann and I. D. Hill. Correction: Algorithm AS 183: An
Efficient and Portable Pseudo-Random Number Generator. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 33(1):123,
1984.

[3] Ericsson AB. Erlang Efficiency Guide. http://www.erlang.org/
doc/efficiency_guide/advanced.html.

[4] M. Gebetsroither. Please add sfmt_pure.erl as tested alternative
— sfmt-erlang issue #5. https://github.com/jj1bdx/sfmt-
erlang/issues/5.

[5] P. Gustafsson and K. Sagonas. Native code compilation of Erlang’s
bit syntax. In Proceedings of the 2002 ACM SIGPLAN workshop
on Erlang, ERLANG ’02, pages 6–15, New York, NY, USA, 2002.
ACM. ISBN 1-58113-592-0. doi: 10.1145/592849.592851. URL
http://doi.acm.org/10.1145/592849.592851.

[6] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical
testing of random number generators. ACM Trans. Math. Softw., 33
(4), Aug. 2007. ISSN 0098-3500. doi: 10.1145/1268776.1268777.
URL http://doi.acm.org/10.1145/1268776.1268777.

[7] D. Luna, M. Pettersson, and K. Sagonas. HiPE on AMD64. In Pro-
ceedings of the 2004 ACM SIGPLAN workshop on Erlang, ERLANG
’04, pages 38–47, New York, NY, USA, 2004. ACM. ISBN 1-58113-
918-7. doi: 10.1145/1022471.1022478. URL http://doi.acm.
org/10.1145/1022471.1022478.

[8] M. Matsumoto and T. Nishimura. Dynamic creation of pseudorandom
number generators. In Monte Carlo and Quasi-Monte Carlo Methods



1998, pages 56–69. Springer, 2000. URL http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/articles.html.

[9] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gener-
ator. ACM Trans. Model. Comput. Simul., 8:3–30, January 1998. ISSN
1049-3301. doi: http://doi.acm.org/10.1145/272991.272995. URL
http://doi.acm.org/10.1145/272991.272995.

[10] M. Papadakis and K. Sagonas. A PropEr integration of types and
function specifications with property-based testing. In Proceedings of
the 10th ACM SIGPLAN workshop on Erlang, Erlang ’11, pages 39–
50, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0859-5. doi:
10.1145/2034654.2034663. URL http://doi.acm.org/10.1145/
2034654.2034663.

[11] Python Software Foundation. Python Programming Language. http:
//www.python.org/.

[12] R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vi-
enna, Austria, 2012. URL http://www.R-project.org/. ISBN
3-900051-07-0.

[13] K. Rikitake. SFMT pseudo random number generator for Erlang.
In Proceedings of the 10th ACM SIGPLAN workshop on Erlang,
Erlang ’11, pages 78–83, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0859-5. doi: 10.1145/2034654.2034669. URL http:
//doi.acm.org/10.1145/2034654.2034669.

[14] M. Saito and M. Matsumoto. A Variant of Mersenne Twister Suit-
able for Graphic Processors. CoRR, abs/1005.4973, 2010. http:
//arxiv.org/abs/1005.4973.

[15] M. Saito and M. Matsumoto. SIMD-Oriented Fast Mersenne Twister:
a 128-bit Pseudorandom Number Generator. In A. Keller, S. Heinrich,
and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo
Methods 2006, pages 607–622. Springer Berlin Heidelberg, 2008.
ISBN 978-3-540-74496-2.

[16] M. Saito and M. Matsumoto. A high quality pseudo random number
generator with small internal state. IPSJ SIG Notes, 2011(3):1–6, Oct.
2011. URL http://ci.nii.ac.jp/naid/110008620834/en/.

[17] M. Saito and M. Matsumoto. Tiny Mersenne Twister
(TinyMT). http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/TINYMT/index.html.

[18] V. Shoup. NTL: A Library for doing Number Theory. http://www.
shoup.net/ntl/.

[19] The Open Source Initiative. The BSD 3-Clause License. http:
//www.opensource.org/licenses/bsd-3-clause.

[20] M. Truog. big-integers implementation of Wichmann-Hill 2006 al-
gorithm — sfmt-erlang issue #3. https://github.com/jj1bdx/
sfmt-erlang/issues/3.

[21] User thomasc at GitHub. Use sfmt-erlang for random number gen-
eration — proper issue #34. https://github.com/manopapad/
proper/pull/34.

[22] B. A. Wichmann and I. D. Hill. Generating good pseudo-random
numbers. Comput. Stat. Data Anal., 51:1614–1622, December 2006.
ISSN 0167-9473. doi: 10.1016/j.csda.2006.05.019. URL http:
//portal.acm.org/citation.cfm?id=1219162.1219278.


