Affordable hardware random number generators (HRNGs)
Kenji Rikitake

りきたけ けんじ
力武 健次

27-NOV-2015
IPSJ IOTS2015 WIP
Chiba, Japan
@jj1bdx

CC-BY 4.0
Executive summary: USE HRNG NOW

— For all host systems
— For all smartphones
— For all IoT systems
— And use a trustable HRNG
Isn't HRNG expensive?

NO

It's already affordable!

A JPY1500 board will make a host computer secure enough
Affordable?

— Cheaper than JPY10000 per each
— Preferably cheaper than JPY3000
— Or even more cheaper
— *Price now: JPY1500 for each*
Why HRNG?
Mandatory for security!

- Keys: TLS, SSH, DNSSEC, passwords
- Load balancing with minimal bias
- Fairness for gambling applications
Isn't /dev/urandom enough?

NO

(if without HRNG)
Why /dev/urandom is not enough?

— Insufficient seeding
— Harvestable entropy too small
— Harvested entropy is spent by too many applications simultaneously
Why Intel's rdrand (or similar HRNG of other chip vendors) is not enough?

— PROPRIETARY hardware
— Possible BACKDOORS
— Might be too SLOW (taking hundreds of system clocks for each call)
Why *original* HRNG?

- Required for *sufficient strength* of seeding /dev/[u]random
- Fast and more unpredictable seeding
- Fast enough to feed all applications through making /dev/[u]random sufficiently random
Obtaining statistically sound result

— Periodic measurement of output statistical characteristics is required
— The same measurement for raw output is recommended for early failure detection
— Whitening by cryptographic hash functions (SHA256, SHA512, etc) is necessary to obtain statistically good and sound result
"OK then show us what you've got"

— avrhwrng
— ST Dongle for NeuG

Both are USB CDC-ACM devices

— Accessible as modem/tty devices
— With 8bit AVR Arduino
— Reverse biased diodes
— \(~10k\text{bytes/sec}\) (raw output: \(~80k\text{bytes/sec}\)
— DC 12V required
— Arduino shield
avrhwrng parts

- 74HCU04 x 1
- 2N3904 x 4
- All available in Akizuki Denshi
 秋月電子通商
- Parts cost: ~JPY500
avrhwrg: Arduino 2009/UNO shield schematics
for a hardware random number generator
by Kenji Rikitake / v2rev1 / 25-SEP-2015
Licensed CC-BY-4.0

Vin = +12V or +13.8V (+9V didn’t work)

![Schematic diagram]

Caps: 100nF 50V layered ceramic
Resistors: 1/4W carbon

Pins: {1, 2}, {3, 4}, {5, 6}
Pins: {13, 12}, {11, 10}, {9, 8}

(The above circuit only shows one of the two same necessary circuits)
avrhwrng amplifiers
Why *two* diodes?

- Differential input for removing environmental common-mode effects
- ... Or simply two-bit parallelism
- Can be extended to more bits/sample
— Yutaka Niibe's GPLv3 HRNG software for ARM Cortex-M3 including Flying Stone's FST-01
— RNG for GnuK, a secure cryptographic token hardware usable on GnuPG and OpenSSH
— No external power required
— Using internal A/D converter noise as the randomness source
— ~80kbytes/sec (with internal whitening)
ST Dongle for NeuG
STM32 Nucleo-64

- ST-LINK/V2-1 part: reconfigurable for NeuG
- And STM32F103 target: also reconfigurable as a NeuG
- JPY1500/board for TWO NeuGs
FreeBSD HRNG code

— Requires a device driver to use random_harvest(9) and rndtest(4)
— ... so I wrote a driver and feeder for FreeBSD 10.2-STABLE
— Working stably for months
On choosing hardware

Japanese semiconductors are no longer available for prototyping: use (American) well-known semiconductors instead (e.g., 2SC1815 -> 2N3904)
For more bandwidth

- Parallelism (bits/sample): a simple I/O with FTDI FT232R/245R?
- More sampling speed: R820T SDR + rtl_entropy?
For more applications

— Stable operation infrastructure needed for fault tolerance
— Expertise on production-level cases (e.g., DNSSEC, PKI key generation)
— We need more internal information for seeding the system PRNG by the external devices: Windows? OS X? Android? iOS? Other proprietary platforms?
My codes and docs in GitHub

- https://github.com/jj1bdx/avrhwrun
- https://github.com/jj1bdx/freebsd-dev-trng
- https://github.com/jj1bdx/osx-devrandom-feeder
NeuG codes and docs

- http://git.gniibe.org/gitweb/
Other projects

— See Wikipedia entry called *Comparison of Hardware Random Number Generators*
Thanks

Questions?