
IPv6 programming
for Erlang/OTP

Kenji Rikitake
ACCMS/IIMC, Kyoto University

30-MAR-2012

Twitter: @kenji_rikitake

kenji.rikitake@acm.org

Kenji Rikitake / Erlang Factory SF Bay 2012 1

Contents

Trying IPv6 on Erlang/OTP is EASY

(Very brief) introduction to IPv6

Erlang handling of IPv6 addresses

Erlang/OTP TCP/IP architecture

IPv6 application examples

IPv6 programming pitfalls

Bugs and issues on R15B

Kenji Rikitake / Erlang Factory SF Bay 2012 2

Trying IPv6 on Erlang is EASY

R15B can handle IPv6 services

 Address format is the (only) major difference

It's ready on major operating systems

 Linux, FreeBSD, Windows 7, etc.

Try free tunneling services for testing

 Enabling IPv6 connectivity over IPv4

 Hurricane Electric's Tunnel Broker

http://www.tunnelbroker.net/

Kenji Rikitake / Erlang Factory SF Bay 2012 3

http://www.tunnelbroker.net/
http://www.tunnelbroker.net/
http://www.tunnelbroker.net/
http://www.tunnelbroker.net/

What is IPv6?

Internet Protocol version 6
 IETF recommendation: July 1994 as "IPng"

 Code base stabilized by 2006 (KAME Project)

Address space: core difference from IPv4
 IPv4: 32 bits -> IPv6: 128 bits

 IPv4 address blocks have been used up
 IANA pool exhausted on 3-FEB-2011

Large-scale apps should migrate to IPv6
 New users may only be able to use IPv6

Kenji Rikitake / Erlang Factory SF Bay 2012 4

How IPv6 works (1)

Unicast address assignment in bits

 Network part: 64, Host part: 64
 Address aggregation occurs to consolidate the routes

 Global ID (48) + Subnet (16) + Host (64)

Host ID: automatically generated or managed

 Stateless autoconfiguration for each interface
Host IDs derived from the hardware address

Required for boot time neighbor discovery

 Stateful configuration, through DHCPv6

 Host ID can be randomized to enhance privacy

Kenji Rikitake / Erlang Factory SF Bay 2012 5

How IPv6 works(2)

Addresses: eight 16-bit hex numbers
2001:db8:cafe:babe:face:b00c:1234:5678

Netmasks: usually /64, variable (as CIDR)
Consecutive zeros abbreviated as "::"
 2001:db8:cafe:babe::/64 <- network
 ::1 = 0:0:0:0:0:0:0:1 ("localhost")
 2001:db8::1 = 2001:db8:0:0:0:0:0:1

On URL: use brackets (RFC5952, RFC3986)
 http://[2001:db8:2::50]:80/index.html

Reverse-lookup zone format: split by hex digits
 e.b.a.b.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa
See my v6hex module for handling the hex digits

Kenji Rikitake / Erlang Factory SF Bay 2012 6

What is IPv6? (3)

Extensive use of multicasting

Multicast addresses (ff00::/8) have scopes

 interface/machine-local (e.g., ff01::1)

 link/subnet-local (e.g., ff02::1)

Equivalent to link-level broadcast

Neighbor Discovery Protocol (NDP)

 Solicitation/advertisement of routers/hosts

Equivalent to ethernet ARP, a part of ICMPv6

Kenji Rikitake / Erlang Factory SF Bay 2012 7

What is IPv6? (4)

Routers no longer make packet fragments

Host-to-host path MTU discovery needed

Finding out the maximum length of IP packet which
will be transferred without fragmentation

Packets exceeding MTU will be discarded

ICMPv6: Packet Too Big message

Minimum MTU: 1280 bytes

Exchanging large UDP packets will be affected

OS protocol stacks will negotiate the MTU, but end-
point programs may also need to be aware of Path MTU

Kenji Rikitake / Erlang Factory SF Bay 2012 8

IPv4-mapped IPv6 addresses

Showing IPv4 nodes in IPv6 addresses
 Uses address space of ::ffff:0:0/96
 IPv4: 192.168.0.1 = IPv6 ::ffff:192.168.0.1

That's ::ffff:c0a8:1 (in pure hex notation)
See RFC4291 Section 2.5.5.2

Interpretation is solely OS-dependent
 IPv4-mapped address used in the source part means
the connection comes from an IPv4 node
 Some OS disables this by default

Allowing pure IPv6 connection only for IPv6 sockets
FreeBSD: net.inet6.ip6.v6only = 1 (disabled)
See RFC3493 Section 5.3

Kenji Rikitake / Erlang Factory SF Bay 2012 9

Erlang/OTP IPv6 address format

8-element tuple of 16-bit unsigned integers

From R15B lib/kernel/src/inet.erl:
-type ip4_address() ::
{0..255,0..255,0..255,0..255}.

-type ip6_address() ::
{0..65535,0..65535,0..65535,0..65535,
 0..65535,0..65535,0..65535,0..65535}.

-type address_family() :: 'inet' | 'inet6'.

inet_parse:address(

 "2001:db8:cafe:babe:face:b00c:1234:5678").

› {ok,{8193,3512,51966,47806,64206,45068,4660,
22136}}

Kenji Rikitake / Erlang Factory SF Bay 2012 10

Tip: Erlang can handle hex numbers

Adding 16# prefix to hex numbers will ease
coding IPv6 address with Erlang tuples

6> {ok, A1} =
inet_parse:address("2001:db8:cafe:babe::1").

{ok,{8193,3512,51966,47806,0,0,0,1}}

8> A2 = {16#2001, 16#db8, 16#cafe, 16#babe,
16#0, 16#0, 16#0, 16#1}.

{8193,3512,51966,47806,0,0,0,1}

9> A1 =:= A2.

true

(Thanks to Fred Hébert for telling me about this idea!)

Kenji Rikitake / Erlang Factory SF Bay 2012 11

Erlang/OTP TCP/IP architecture
User application

modules and programs

Written
in

Erlang

kernel gen_tcp, gen_udp, gen_sctp modules
(TCP/UDP/SCTP socket interfaces)

kernel inet_*, inet6_* modules
(lower-level access to TCP/IP functions)

erts/preloaded/src/prim_inet.erl
(interface to the linked-in drivers)

erts/emulator/drivers/common/inet_drv.c
(tcp_inet/udp_inet/sctp_inet linked-in drivers)

Linked-in
drivers

(C code)

OS protocol stack
(system calls, socket-related libraries)

OS kernel
and

libraries

Kenji Rikitake / Erlang Factory SF Bay 2012 12

TCP/UDP/SCTP code needs little mods

Erlang/OTP network code is highly abstract

OTP library firmly distinguishes between IPv4
and IPv6 address families

e.g., kernel/src/inet_tcp.erl .vs. inet6_tcp.erl

 inet or inet6 address family info required

 connect/{3,4} and listen/2 functions accept the
inet6 option in gen_tcp and ssl modules

And that's (almost) all you need to do

 Note: the address family option must match
with the IP address passed on to the function

Kenji Rikitake / Erlang Factory SF Bay 2012 13

How to determine if IPv6 is supported

Deciding by "localhost" is resolvable to "::1"

inet:getaddr/2 looks up the DNS and returns
the address of specified family (inet/inet6)

% from MochiWeb mochiweb_socket_server module

ipv6_supported() ->

 case (

 catch inet:getaddr("localhost", inet6)) of

 {ok, _Addr} -> true;

 {error, _} -> false

 end.

Kenji Rikitake / Erlang Factory SF Bay 2012 14

gen_tcp:connect/3 Address parameter

You only have to pass on the address tuple

If Address is a hostname:

 tcp module name in ERL_INETRC is effective
To change this for IPv6, add the following line:

{tcp, inet6_tcp}. % default: inet_tcp

% Don't forget the ending period

If Address is a tuple:

 Choose the family by BIF tuple_size(Address)
4 -> IPv4 (inet_tcp), 8 -> IPv6 (inet6_tcp)

Same behavior on gen_udp and gen_sctp

Kenji Rikitake / Erlang Factory SF Bay 2012 15

More OTP IPv6-compatible functions

inet_parse:address/1 (address string -> tuple)

inet_parse:ntoa/1 (tuple -> address string)

inet:getaddrs/2 (2nd arg: address family)

inet:gethostbyaddr/1 (tuple -> hostent)

inet_res:gethostbyaddr/1 (DNS backend)

inet_res:gethostbyname/1 (DNS backend)
inet_res resolvers will try to return IPv6 address first
when the following line is set in ERL_INETRC (and IPv4-
mapped IPv6 address for IPv4 addresses):

{inet6, true}. % default: false

% Don't forget to include the period!

Kenji Rikitake / Erlang Factory SF Bay 2012 16

IPv6 support on Erlang programs

"grep inet6" helps to look up the source code

TCP-based Web servers are OK

 Mochiweb, Yaws (including SSL/TLS)

TCP/UDP network programs are also OK

 Tsung, ejabberd

Rewriting needed for those handle ICMPv6

 Procket (socket tweaking tool)

ICMPv6 (protocol 58) =/= ICMPv4 (protocol 1)

See my (experimental) example fork on GitHub

Kenji Rikitake / Erlang Factory SF Bay 2012 17

How to choose IPv4 or IPv6

Web/TCP servers: use multiple instances
 Use at least one for each protocol

DNS: preference strategy required
 RFC3484 recommends IPv6 first, then IPv4

 Reality: very few sites support IPv6 yet

 A simple workaround example
Look up AAAA RR first with timeout (~200ms)

If found, then use the IPv6 address for access

If not found, look up A RR (falling back to IPv4)

Example code in my v6hex:v64adrs/{1,2}

Kenji Rikitake / Erlang Factory SF Bay 2012 18

Bugs and issues on R15B

Distributed Erlang on IPv6 doesn't work
 -proto_dist inet6_tcp

 epmd doesn't listen on the IPv6 port

 Patch exists but not accepted by OTP team

 Multiple daemons for multiple transports?

Interface identifiers (IIDs) not supported
 Interface name after '%' e.g., ff02::1%em0

 Required for link-scoped multicast addresses

ICMP and raw sockets (aka black magic)

Kenji Rikitake / Erlang Factory SF Bay 2012 19

Acknowledgments to:

People helping the code development

Francesco Cesarini

Who suggested me to give this talk

Michael Santos (the author of procket)

Frédéric Trottier-Hébert (for 16# prefix)

and all the participants of EF SF Bay 2012!

Kenji Rikitake / Erlang Factory SF Bay 2012 20

References (1)

• v6hex: https://github.com/jj1bdx/v6hex

• Mochiweb: https://github.com/mochi/mochiweb

• Procket: https://github.com/msantos/procket

• mine with ICMPv6: https://github.com/jj1bdx/procket

• Erlang/OTP documentation

• Inet configuration, ERTS User's Guide

• inet module, kernel reference manual

• Erlang/OTP source code

lib/kernel/src/inet*.erl

(Read the files many times to understand the details)

Kenji Rikitake / Erlang Factory SF Bay 2012 21

https://github.com/jj1bdx/v6hex
https://github.com/mochi/mochiweb
https://github.com/mochi/mochiweb
https://github.com/mochi/mochiweb
https://github.com/msantos/procket
https://github.com/msantos/procket
https://github.com/jj1bdx/procket
https://github.com/jj1bdx/procket
https://github.com/jj1bdx/procket

References (2)

• Kevin R. Fall, and W. Richard Stevens, TCP/IP
Illustrated, Volume 1, Second Edition: The
Protocols, Addison-Wesley, 2012, ISBN
9780321336316 (including full IPv6 explanation)

• W. Richard Stevens, Bill Fenner, and Andrew M.
Rudoff, UNIX Network Programming, Volume 1,
Third Edition: The Sockets Networking API,
Addison-Wesley, 2004, ISBN 9780131411555
(describing basic coding techniques)

• Dan York, Migrating Applications to IPv6, O'Reilly,
2011, ISBN 9781449307875 (recommended as in
introductory reading)

Kenji Rikitake / Erlang Factory SF Bay 2012 22

https://github.com/jj1bdx/sfmt-erlang/

