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What is random number generator? 

Generating sequence of discrete numbers 

Two types of RNGs: 

"True" RNGs: data from physical phenomena 

Pseudo RNGs: computed from a seed 

seed: initial vectors of tables of the internal state 

In Erlang/OTP, two modules of RNGs 

crypto: OpenSSL API (NIFs from R14B) 

random: Wichmann-Hill AS183 (in 1982)  
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Requirements of RNGs 

Uniform deviates 
Each of possible values is equally probable 

The building block for other deviates 

Each number in the sequence must be 
statistically independent 
Non-deterministic (unpredictable from past) 

Non-periodic (no same sequence reappears) 

Fast enough to supply the demand 
Generation speed could be a bottleneck 
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"True" RNG hardware examples 

Collecting physical randomness / entropy 
Avalanche diode noise 
Free-running oscillators 
Atmospheric noise (random.org uses this) 

Slow and expensive 
The generation process does not guarantee if the 
output is equally probable and statistically independent 
The output should be continuously verified and 
calibrated if the offset of the output deviate is large 

See RFC4086 Section 3 and Section 4 for the details 

Not repeatable (at least theoretically) 
Practically used for seeding PRNGs for cryptography 
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http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4086


Avalanche diode RNG circuit example 

Kenji Rikitake / Erlang Factory SF Bay 2011 6 

Example at https://github.com/jj1bdx/avrhwrng/ 
Speed: ~10kbps (or even slower for accuracy)  

https://github.com/jj1bdx/avrhwrng/


Arduino RNG looks like this 
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Photo by Kenji Rikitake 2009 

Transistors 
as noise 
diodes 



Characteristics of pseudo RNGs 

Computed number sequences 

Deterministic by definition 

given the same seed, the same results show up 

Very long period but periodic anyway 

Longer period needed for larger scale application  

Faster and more efficient than "True" RNGs 

Practical use: simulation and modeling 

random sampling / hashing / testing 

Load balancing, DHT, Monte Carlo method, etc. 
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Cryptographic strength of PRNGs 

Cryptographically-strong PRNGs must: 
use the algorithm to prevent future data from 
the past generated data (with AES, SHA, etc.) 
maintain collection of entropy pools from the 
various sources (network activities, etc.)  

virtual machines: less entropy will be obtainable 

secure the seeding process to prevent injection 
attempts from the attackers 

Use well-established methods for security 
OpenSSL uses /dev/urandom on FreeBSD 
Accuracy transcends speed 

Expect a lot of time to obtain sufficient random bits 
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So what kind of RNGs in Erlang/OTP? 

crypto module 

rand_bytes/1, rand_uniform/2 

OpenSSL API functions 

Always use crypto functions for security 

random module: Wichmann-Hill AS183 

period is very short (~ 7 x 10^12) [1] 

Written solely in Erlang 
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[1] B. A. Wichmann, I. D. Hill, “Algorithm AS 183: An Efficient and Portable Pseudo-Random Number 
Generator”, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 31, No. 2 (1982), pp. 
188-190, Stable URL: http://www.jstor.org/stable/2347988 

http://www.jstor.org/stable/2347988
http://www.jstor.org/stable/2347988


Original AS183 code in FORTRAN 
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C IX, IY, IZ SHOULD BE SET TO INTEGER VALUES 
C BETWEEN 1 AND 30000 BEFORE FIRST ENTRY 
 
IX = MOD(171 * IX, 30269) 
IY = MOD(172 * IY, 30307) 
IZ = MOD(170 * IZ, 30323) 
 
RANDOM = AMOD(FLOAT(IX) / 30269.0 +  
         FLOAT(IY) / 30307.0 + FLOAT(IZ) /  
         30323.0, 1.0) 

Source: Microsoft, Description of the RAND function in Excel 
 http://support.microsoft.com/kb/828795 

http://support.microsoft.com/kb/828795


random module code of AS183  

Kenji Rikitake / Erlang Factory SF Bay 2011 12 

%% from lib/stdlib/src/random.erl 
%% of Erlang/OTP R14B02 
 
uniform() -> 
    {A1, A2, A3} = case get(random_seed) of 
                       undefined -> seed0(); 
                       Tuple -> Tuple 
                   end, 
    B1 = (A1*171) rem 30269, 
    B2 = (A2*172) rem 30307, 
    B3 = (A3*170) rem 30323, 
    put(random_seed, {B1,B2,B3}), 
    R = A1/30269 + A2/30307 + A3/30323, 
    R - trunc(R). 



AS183 512x512 bitmap pattern test 
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(this looks well-randomized visually) 



What weak or bad RNGs will cause 

Vulnerability by predictable choice 

DNS UDP source port numbers 

Precisely guessing cross-site state through 
JavaScript Math.random() method [2] 

Non-uniform bias on simulation 

Which may show up on a short-period RNG 

Assumption of uniform deviate may fail 
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[2] A. Klein: Temporary user tracking in major browsers and Cross-domain information leakage and attacks, 
Trusteer, 2008, URL: http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-
browsers-and-cross-domain-information-leakag  
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rand(0,1) on PHP 5 Windows 
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(you can see a repetitive pattern - that's bad) 
Source: http://twitpic.com/gq81b/full 

http://twitpic.com/gq81b/full
http://twitpic.com/gq81b/full
http://twitpic.com/gq81b/full


Another popular example of bad RNG 
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%% originally from http://xkcd.com/221/ 
%% converted(?) to Erlang by Kenji Rikitake 
 
-module(get_random_number). 
-export([rand/0]). 
 
rand() -> 
    % Chosen by fair dice roll. 
    % Guaranteed to be random. 
    4. 
 
%% DO NOT USE THIS FOR A REAL APPLICATION! 

http://xkcd.com/221/


Issues needed to be solved 

For security, crypto functions are must 
In ssh module of R14B02 only AS183 found  

Longer period for non-crypto RNGs 
AS183 is good, but we need something better 

7 x 10^12 period only holds ~81 days, if you 
generate 1 million random numbers for each second 

Faster generation for non-crypto RNGs 
Faster algorithm for integer use 

Maybe even faster with NIFs 
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SIMD-Oriented Mersenne Twister 

A very good and fast PRNG 
A revised version of Mersenne Twister 

very good = very long generation cycle 
typical: 2^19937 - 1, up to 2^216091 – 1 

(depending on the internal state table size) 

Supporting SSE2/altivec SIMD features 

Open source and (new) BSD licensed 

Implementations of (SF)MT avaliable for: 
C, C++, Gauche, Java, Python, R, etc.  

URL: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html 
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So why SFMT on Erlang? 

The PRNG quality is well proven 

survived the DIEHARD test 

It would be fast if implemented with NIFs 

and that's what I have done 

SFMT RNG parameters are tunable 

multiple algorithms generating independent 
streams possible if needed 
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PRNG enhancements with sfmt-erlang 

SFMT implementation 

Making the C code reentrant 
http://github.com/jj1bdx/sfmt-extstate 

of five (5) different periods with NIFs 
~40 times faster than the non-NIF code 

it's even faster than random module 

Wichmann-Hill 2006 generator [3] 

Called random_wh06 module 

A better RNG when NIFs can't be used 
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[3] B.A. Wichmann, I.D. Hill, Generating good pseudo-random numbers, Computational Statistics & Data 
Analysis, Volume 51, Issue 3, 1 December 2006, Pages 1614-1622, ISSN 0167-9473, DOI: 
10.1016/j.csda.2006.05.019. 

http://github.com/jj1bdx/sfmt-extstate
http://github.com/jj1bdx/sfmt-extstate
http://github.com/jj1bdx/sfmt-extstate
http://dx.doi.org/10.1016/j.csda.2006.05.019
http://dx.doi.org/10.1016/j.csda.2006.05.019


SFMT Step 1: reentrant C code 

Revised the SFMT reference code 
Removed all  arrays  

The internal state table was defined as 
the ultimate form of the shared memory evil! 

Removed the altivec and 64bit features 
no testing environment available 

SSE2 code removed 
crashes for an unknown reason 

128-bit alignment issue of enif_alloc()? 

Rewritten the code so that the internal state 
tables must be passed by the pointers 

Allowing concurrent operation of the functions 
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SFMT Step 2: pure Erlang version  

Literal translation from the revised C code 

SFMT itself can be written as a recursion 
a[X] = r(a[X-N], a[X-(N-POS1)], a[X-1], a[X-2]) 

Extensive use of head-and-tail lists 

Adding elements to the heads and do the 
lists:reverse/1 made the code 50% faster than 
using the  operator 

Still ~300 times slower than the C Code 

But it worked! (And that's what is important) 
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C to Erlang conversion tips 

Erlang integers are BIGNUMs 

Explicitly limit the result bit length by 
each time after bsl and any other operation 

which may exceed the given C integer length 

Erlang bsr is arithmetic shift right 

e.g., -1 =:= -10 bsr 4 is true 

The array module object is immutable 

i.e., array:set/3 makes a modified copy  

Kenji Rikitake / Erlang Factory SF Bay 2011 23 



SFMT Step 3: writing a NIF version 

NIF modules are full of C static code 

It's a shared-everything world as default 

When a NIF fails, it crashes the BEAM 

The fastest way to learn the NIF coding: 

read the manual of erl_nif (under erts) 

read the R14 crypto module 

try first from smaller functions, step-by-step 

Use regression testing tools (e.g., eunit) 
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NIF programming tips 

It's hard-core C programming 

Put all functions in the same .c file 

Remember how static scope works 

Make the copy first before modifying a binary 

Without this you may face a heisenbug 

Erlang binaries are supposed to be immutable; 
so the content must stay unmodified! 

Learn the enif_*() functions first 

they will make the code efficient and terse 

Kenji Rikitake / Erlang Factory SF Bay 2011 25 



A case study: table handling on SFMT 

Case 1: list processing 
NIF: internal table -> integer list  

generating PRN by [head|tail] operation 

Case 2: random access through NIF 
generating PRN each time by calling a NIF 
with the internal table and the index number 

Result: Case 1 is faster than Case 2 
on a 2-core SMP VM - parallelism discovered? 

Lesson learned: profile before optimize 
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For the efficient Erlang + C coding 

Use a decent syntax highlighter 

erlang-mode and cc-mode on Emacs 

Use dev tools as much as possible 

eunit, fprof, rebar, escript, etc. 

Automate the documentation 

EDoc (for Erlang) and Doxygen (for C) 

Learn the Markdown format 

It's much easier than to write HTML by hand 
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So how fast the SFMT NIF code is? 

Wall clock time of 100 * 100000 PRNs 

 on Kyoto University ACCMS Supercomputer 
Thin Cluster node (Fujitsu HX600) 

AMD Opteron 2.3GHz amd64 16 cores/node 

RedHat Enterprise Linux AS V4 

Erlang R14B01, running in a batch queue 

Kenji Rikitake / Erlang Factory SF Bay 2011 28 

sfmt: 
gen_rand_
list32/2 

sfmt: 
uniform_s
/1 

random: 
uniform_s
/1 

random_wh
06: 
uniform_s
/1 

sfmt: 
gen_rand3
2_max/2 

random: 
uniform_s
/2 

random_wh
06: 
uniform_s
/2 

240ms 2600ms 7110ms 11220ms 2440ms 7720ms 11790ms 

x1.0 x10.8 x29.6 x46.8 x10.2 x32.2 x49.1 



speed of random .vs. random_wh06 

random:uniform_s/1 random_wh06:uniform_s/1 ratio of  
random_wh06 / random 

reseaux 544.9ms 487.9ms 0.895 

leciel 1400.3ms 2274.8ms 1.625 

thin 309.2ms 331.2ms 1.071 
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For 100000 calls of OWN time measured by fprof on R14B01 
System details: 
• reseaux: Core2Duo E6550 2.3GHz FreeBSD/i386 8.2-RELEASE 
• leciel: Atom N270 1.6GHz FreeBSD/i386 8.2-RELEASE 
• thin: Opteron 8356 2.3GHz RHEL AS V4 on amd64 
This set of results suggest: 
• The speed overhead from random to random_wh06 for CPUs 

with sufficient floating-point calculation support: < 10% 
• On a CPU with lesser capability such as Atom, the overhead 

will increase to > 60%  



Total exec time of sfmt:gen_rand32_max   
.vs. SFMT internal table length 
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(for 100 * 100000 calls) 
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SFMT gen_rand32_list/2 performance 
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2^607-1 
2^4253-1 2^19937-1 2^86243-1 

2^216091-1 

Total OWN time measured by fprof for 10 calls of 
gen_rand_list32(10000, State) of each sfmt module 
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SFMT gen_rand_all/1 performance 
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Conclusion and future works (1) 

SFMT NIF: >x3 faster than AS183 

It's also better for simulation and modeling  

SFMT NIF behavior for period length 

Shorter period causes larger calling overhead 

gen_rand32_list/2 exec time is ~ constant 

gen_rand_all/1 exec time is proportional to the 
internal state table size for a large period 

random_wh06: 10~60% slower than AS183 

more room to optimize for slower CPUs 
Full 32bit integer is BIGNUM for 32bit Erlang VM 
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Conclusion and future works (2) 

Future works: exploring parallelism 
SFMT is inherently sequential/iterative 

Looking for a new algorithm is needed 
There are parallelism-oriented PRNG algorithms 

Simplistic algorithms: LShift, XOR32, etc. 

Review of Erlang/OTP code for the secure 
usage of PRNGs is needed 
Very few network modules use crypto RNG 

Analysis on Windows and other OSes needed 
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