
Erlang/OTP
and how the PRNGs work

Kenji Rikitake
Academic Center for Computing

and Media Studies (ACCMS),

Kyoto University

25-MAR-2011

Kenji Rikitake / Erlang Factory SF Bay 2011 1

Contents

What is random number generator?

Requirement of RNGs

True RNGs .vs. Pseudo RNGs (PRNGs)

RNGs implemented in Erlang/OTP

crypto and random modules and their issues

PRNG enhancements

SFMT: a long-period PRNG with NIFs

Wichmann-Hill 2006 algorithm (random_wh06)

Conclusions and future works

Kenji Rikitake / Erlang Factory SF Bay 2011 2

What is random number generator?

Generating sequence of discrete numbers

Two types of RNGs:

"True" RNGs: data from physical phenomena

Pseudo RNGs: computed from a seed

seed: initial vectors of tables of the internal state

In Erlang/OTP, two modules of RNGs

crypto: OpenSSL API (NIFs from R14B)

random: Wichmann-Hill AS183 (in 1982)

Kenji Rikitake / Erlang Factory SF Bay 2011 3

Requirements of RNGs

Uniform deviates
Each of possible values is equally probable

The building block for other deviates

Each number in the sequence must be
statistically independent
Non-deterministic (unpredictable from past)

Non-periodic (no same sequence reappears)

Fast enough to supply the demand
Generation speed could be a bottleneck

Kenji Rikitake / Erlang Factory SF Bay 2011 4

"True" RNG hardware examples

Collecting physical randomness / entropy
Avalanche diode noise
Free-running oscillators
Atmospheric noise (random.org uses this)

Slow and expensive
The generation process does not guarantee if the
output is equally probable and statistically independent
The output should be continuously verified and
calibrated if the offset of the output deviate is large

See RFC4086 Section 3 and Section 4 for the details

Not repeatable (at least theoretically)
Practically used for seeding PRNGs for cryptography

Kenji Rikitake / Erlang Factory SF Bay 2011 5

http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4086

Avalanche diode RNG circuit example

Kenji Rikitake / Erlang Factory SF Bay 2011 6

Example at https://github.com/jj1bdx/avrhwrng/
Speed: ~10kbps (or even slower for accuracy)

https://github.com/jj1bdx/avrhwrng/

Arduino RNG looks like this

Kenji Rikitake / Erlang Factory SF Bay 2011 7

Photo by Kenji Rikitake 2009

Transistors
as noise
diodes

Characteristics of pseudo RNGs

Computed number sequences

Deterministic by definition

given the same seed, the same results show up

Very long period but periodic anyway

Longer period needed for larger scale application

Faster and more efficient than "True" RNGs

Practical use: simulation and modeling

random sampling / hashing / testing

Load balancing, DHT, Monte Carlo method, etc.

Kenji Rikitake / Erlang Factory SF Bay 2011 8

Cryptographic strength of PRNGs

Cryptographically-strong PRNGs must:
use the algorithm to prevent future data from
the past generated data (with AES, SHA, etc.)
maintain collection of entropy pools from the
various sources (network activities, etc.)

virtual machines: less entropy will be obtainable

secure the seeding process to prevent injection
attempts from the attackers

Use well-established methods for security
OpenSSL uses /dev/urandom on FreeBSD
Accuracy transcends speed

Expect a lot of time to obtain sufficient random bits

Kenji Rikitake / Erlang Factory SF Bay 2011 9

So what kind of RNGs in Erlang/OTP?

crypto module

rand_bytes/1, rand_uniform/2

OpenSSL API functions

Always use crypto functions for security

random module: Wichmann-Hill AS183

period is very short (~ 7 x 10^12) [1]

Written solely in Erlang

Kenji Rikitake / Erlang Factory SF Bay 2011 10

[1] B. A. Wichmann, I. D. Hill, “Algorithm AS 183: An Efficient and Portable Pseudo-Random Number
Generator”, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 31, No. 2 (1982), pp.
188-190, Stable URL: http://www.jstor.org/stable/2347988

http://www.jstor.org/stable/2347988
http://www.jstor.org/stable/2347988

Original AS183 code in FORTRAN

Kenji Rikitake / Erlang Factory SF Bay 2011 11

C IX, IY, IZ SHOULD BE SET TO INTEGER VALUES
C BETWEEN 1 AND 30000 BEFORE FIRST ENTRY

IX = MOD(171 * IX, 30269)
IY = MOD(172 * IY, 30307)
IZ = MOD(170 * IZ, 30323)

RANDOM = AMOD(FLOAT(IX) / 30269.0 +
 FLOAT(IY) / 30307.0 + FLOAT(IZ) /
 30323.0, 1.0)

Source: Microsoft, Description of the RAND function in Excel
 http://support.microsoft.com/kb/828795

http://support.microsoft.com/kb/828795

random module code of AS183

Kenji Rikitake / Erlang Factory SF Bay 2011 12

%% from lib/stdlib/src/random.erl
%% of Erlang/OTP R14B02

uniform() ->
 {A1, A2, A3} = case get(random_seed) of
 undefined -> seed0();
 Tuple -> Tuple
 end,
 B1 = (A1*171) rem 30269,
 B2 = (A2*172) rem 30307,
 B3 = (A3*170) rem 30323,
 put(random_seed, {B1,B2,B3}),
 R = A1/30269 + A2/30307 + A3/30323,
 R - trunc(R).

AS183 512x512 bitmap pattern test

Kenji Rikitake / Erlang Factory SF Bay 2011 13

(this looks well-randomized visually)

What weak or bad RNGs will cause

Vulnerability by predictable choice

DNS UDP source port numbers

Precisely guessing cross-site state through
JavaScript Math.random() method [2]

Non-uniform bias on simulation

Which may show up on a short-period RNG

Assumption of uniform deviate may fail

Kenji Rikitake / Erlang Factory SF Bay 2011 14

[2] A. Klein: Temporary user tracking in major browsers and Cross-domain information leakage and attacks,
Trusteer, 2008, URL: http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-
browsers-and-cross-domain-information-leakag

http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag
http://www.trusteer.com/list-context/publications/temporary-user-tracking-major-browsers-and-cross-domain-information-leakag

rand(0,1) on PHP 5 Windows

Kenji Rikitake / Erlang Factory SF Bay 2011 15

(you can see a repetitive pattern - that's bad)
Source: http://twitpic.com/gq81b/full

http://twitpic.com/gq81b/full
http://twitpic.com/gq81b/full
http://twitpic.com/gq81b/full

Another popular example of bad RNG

Kenji Rikitake / Erlang Factory SF Bay 2011 16

%% originally from http://xkcd.com/221/
%% converted(?) to Erlang by Kenji Rikitake

-module(get_random_number).
-export([rand/0]).

rand() ->
 % Chosen by fair dice roll.
 % Guaranteed to be random.
 4.

%% DO NOT USE THIS FOR A REAL APPLICATION!

http://xkcd.com/221/

Issues needed to be solved

For security, crypto functions are must
In ssh module of R14B02 only AS183 found

Longer period for non-crypto RNGs
AS183 is good, but we need something better

7 x 10^12 period only holds ~81 days, if you
generate 1 million random numbers for each second

Faster generation for non-crypto RNGs
Faster algorithm for integer use

Maybe even faster with NIFs

Kenji Rikitake / Erlang Factory SF Bay 2011 17

SIMD-Oriented Mersenne Twister

A very good and fast PRNG
A revised version of Mersenne Twister

very good = very long generation cycle
typical: 2^19937 - 1, up to 2^216091 – 1

(depending on the internal state table size)

Supporting SSE2/altivec SIMD features

Open source and (new) BSD licensed

Implementations of (SF)MT avaliable for:
C, C++, Gauche, Java, Python, R, etc.

URL: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html

Kenji Rikitake / Erlang Factory SF Bay 2011 18

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html

So why SFMT on Erlang?

The PRNG quality is well proven

survived the DIEHARD test

It would be fast if implemented with NIFs

and that's what I have done

SFMT RNG parameters are tunable

multiple algorithms generating independent
streams possible if needed

Kenji Rikitake / Erlang Factory SF Bay 2011 19

PRNG enhancements with sfmt-erlang

SFMT implementation

Making the C code reentrant
http://github.com/jj1bdx/sfmt-extstate

of five (5) different periods with NIFs
~40 times faster than the non-NIF code

it's even faster than random module

Wichmann-Hill 2006 generator [3]

Called random_wh06 module

A better RNG when NIFs can't be used

Kenji Rikitake / Erlang Factory SF Bay 2011 20

[3] B.A. Wichmann, I.D. Hill, Generating good pseudo-random numbers, Computational Statistics & Data
Analysis, Volume 51, Issue 3, 1 December 2006, Pages 1614-1622, ISSN 0167-9473, DOI:
10.1016/j.csda.2006.05.019.

http://github.com/jj1bdx/sfmt-extstate
http://github.com/jj1bdx/sfmt-extstate
http://github.com/jj1bdx/sfmt-extstate
http://dx.doi.org/10.1016/j.csda.2006.05.019
http://dx.doi.org/10.1016/j.csda.2006.05.019

SFMT Step 1: reentrant C code

Revised the SFMT reference code
Removed all arrays

The internal state table was defined as
the ultimate form of the shared memory evil!

Removed the altivec and 64bit features
no testing environment available

SSE2 code removed
crashes for an unknown reason

128-bit alignment issue of enif_alloc()?

Rewritten the code so that the internal state
tables must be passed by the pointers

Allowing concurrent operation of the functions

Kenji Rikitake / Erlang Factory SF Bay 2011 21

SFMT Step 2: pure Erlang version

Literal translation from the revised C code

SFMT itself can be written as a recursion
a[X] = r(a[X-N], a[X-(N-POS1)], a[X-1], a[X-2])

Extensive use of head-and-tail lists

Adding elements to the heads and do the
lists:reverse/1 made the code 50% faster than
using the operator

Still ~300 times slower than the C Code

But it worked! (And that's what is important)

Kenji Rikitake / Erlang Factory SF Bay 2011 22

C to Erlang conversion tips

Erlang integers are BIGNUMs

Explicitly limit the result bit length by
each time after bsl and any other operation

which may exceed the given C integer length

Erlang bsr is arithmetic shift right

e.g., -1 =:= -10 bsr 4 is true

The array module object is immutable

i.e., array:set/3 makes a modified copy

Kenji Rikitake / Erlang Factory SF Bay 2011 23

SFMT Step 3: writing a NIF version

NIF modules are full of C static code

It's a shared-everything world as default

When a NIF fails, it crashes the BEAM

The fastest way to learn the NIF coding:

read the manual of erl_nif (under erts)

read the R14 crypto module

try first from smaller functions, step-by-step

Use regression testing tools (e.g., eunit)

Kenji Rikitake / Erlang Factory SF Bay 2011 24

NIF programming tips

It's hard-core C programming

Put all functions in the same .c file

Remember how static scope works

Make the copy first before modifying a binary

Without this you may face a heisenbug

Erlang binaries are supposed to be immutable;
so the content must stay unmodified!

Learn the enif_*() functions first

they will make the code efficient and terse

Kenji Rikitake / Erlang Factory SF Bay 2011 25

A case study: table handling on SFMT

Case 1: list processing
NIF: internal table -> integer list

generating PRN by [head|tail] operation

Case 2: random access through NIF
generating PRN each time by calling a NIF
with the internal table and the index number

Result: Case 1 is faster than Case 2
on a 2-core SMP VM - parallelism discovered?

Lesson learned: profile before optimize

Kenji Rikitake / Erlang Factory SF Bay 2011 26

For the efficient Erlang + C coding

Use a decent syntax highlighter

erlang-mode and cc-mode on Emacs

Use dev tools as much as possible

eunit, fprof, rebar, escript, etc.

Automate the documentation

EDoc (for Erlang) and Doxygen (for C)

Learn the Markdown format

It's much easier than to write HTML by hand

Kenji Rikitake / Erlang Factory SF Bay 2011 27

So how fast the SFMT NIF code is?

Wall clock time of 100 * 100000 PRNs

 on Kyoto University ACCMS Supercomputer
Thin Cluster node (Fujitsu HX600)

AMD Opteron 2.3GHz amd64 16 cores/node

RedHat Enterprise Linux AS V4

Erlang R14B01, running in a batch queue

Kenji Rikitake / Erlang Factory SF Bay 2011 28

sfmt:
gen_rand_
list32/2

sfmt:
uniform_s
/1

random:
uniform_s
/1

random_wh
06:
uniform_s
/1

sfmt:
gen_rand3
2_max/2

random:
uniform_s
/2

random_wh
06:
uniform_s
/2

240ms 2600ms 7110ms 11220ms 2440ms 7720ms 11790ms

x1.0 x10.8 x29.6 x46.8 x10.2 x32.2 x49.1

speed of random .vs. random_wh06

random:uniform_s/1 random_wh06:uniform_s/1 ratio of
random_wh06 / random

reseaux 544.9ms 487.9ms 0.895

leciel 1400.3ms 2274.8ms 1.625

thin 309.2ms 331.2ms 1.071

Kenji Rikitake / Erlang Factory SF Bay 2011 29

For 100000 calls of OWN time measured by fprof on R14B01
System details:
• reseaux: Core2Duo E6550 2.3GHz FreeBSD/i386 8.2-RELEASE
• leciel: Atom N270 1.6GHz FreeBSD/i386 8.2-RELEASE
• thin: Opteron 8356 2.3GHz RHEL AS V4 on amd64
This set of results suggest:
• The speed overhead from random to random_wh06 for CPUs

with sufficient floating-point calculation support: < 10%
• On a CPU with lesser capability such as Atom, the overhead

will increase to > 60%

Total exec time of sfmt:gen_rand32_max
.vs. SFMT internal table length

Kenji Rikitake / Erlang Factory SF Bay 2011 30

(for 100 * 100000 calls)

2^607-1

2^4253-1 2^19937-1 2^86243-1 2^216091-1

5 10 20 50 100 200 500 1000 2000

0

2
0

0
0

4

0
0

0

6
0

0
0

8

0
0

0

5 10 20 50 100 200 500 1000 2000

0

2
0

0
0

4

0
0

0

6
0

0
0

8

0
0

0

5 10 20 50 100 200 500 1000 2000

0

2
0

0
0

4

0
0

0

6
0

0
0

8

0
0

0

N (internal table length [of 128bit words])

T
o

ta
l
w

a
ll

c
lo

c
k
 t
im

e
[m

s
]

leciel
thin
reseaux

SFMT gen_rand32_list/2 performance

Kenji Rikitake / Erlang Factory SF Bay 2011 31

2^607-1
2^4253-1 2^19937-1 2^86243-1

2^216091-1

Total OWN time measured by fprof for 10 calls of
gen_rand_list32(10000, State) of each sfmt module

5 10 20 50 100 200 500 1000 2000

0

2

4

6

8

5 10 20 50 100 200 500 1000 2000

0

2

4

6

8

5 10 20 50 100 200 500 1000 2000

0

2

4

6

8

N (internal table length [of 128bit words]

to
ta

l
O

W
N

 t
im

e
 [
m

s
]

leciel

thin

reseaux

SFMT gen_rand_all/1 performance

Kenji Rikitake / Erlang Factory SF Bay 2011 32

5 10 20 50 100 200 500 1000 2000

1

2

5

1
0

2

0

5
0

N (internal table length [of 128bit words]

O
W

N
 t
im

e
 f

o
r

e
a

c
h

 c
a

ll
[m

ic
ro

s
e

c
o

n
d
]

2^607-1
2^4253-1

2^19937-1

2^86243-1

2^216091-1

gen_rand_all/1 OWN time measured by
fprof, for 100000 integer and 100000
float random numbers of sfmt modules
measured on thin (Kyoto University
ACCMS supercomputer)

Conclusion and future works (1)

SFMT NIF: >x3 faster than AS183

It's also better for simulation and modeling

SFMT NIF behavior for period length

Shorter period causes larger calling overhead

gen_rand32_list/2 exec time is ~ constant

gen_rand_all/1 exec time is proportional to the
internal state table size for a large period

random_wh06: 10~60% slower than AS183

more room to optimize for slower CPUs
Full 32bit integer is BIGNUM for 32bit Erlang VM

Kenji Rikitake / Erlang Factory SF Bay 2011 33

Conclusion and future works (2)

Future works: exploring parallelism
SFMT is inherently sequential/iterative

Looking for a new algorithm is needed
There are parallelism-oriented PRNG algorithms

Simplistic algorithms: LShift, XOR32, etc.

Review of Erlang/OTP code for the secure
usage of PRNGs is needed
Very few network modules use crypto RNG

Analysis on Windows and other OSes needed

Kenji Rikitake / Erlang Factory SF Bay 2011 34

Acknowledgments to:

ACCMS, Kyoto University

In this research, I used the Kyoto University
ACCMS Supercomputer Thin Cluster System

It's more cost effective than building an amd64
test environment on an independent PC

People helping the code development:

Dave "dizzyd" Smith, Tuncer Ayaz, Tim Bates,
Dan Gudmudsson, Richard O'Keefe

and all the participants of EF SF Bay 2011!

Kenji Rikitake / Erlang Factory SF Bay 2011 35

References

• https://github.com/jj1bdx/sfmt-erlang/

• random.org http://www.random.org/

• Press et al, Numerical Recipes (Third Edition),
Cambridge Press, 2007, ISBN 9780521880688,
Chapter 7 "Random Numbers", see
http://www.nr.com/

• http://www.diigo.com/user/jj1bdx/random
 My bookmarks about random number generation

• Ferguson et al, Cryptography Engineering,
Wiley, 2010, ISBN 9780470474242 , Chapter 9
"Generating Randomness"

Kenji Rikitake / Erlang Factory SF Bay 2011 36

https://github.com/jj1bdx/sfmt-erlang/
https://github.com/jj1bdx/sfmt-erlang/
https://github.com/jj1bdx/sfmt-erlang/
http://www.random.org/
http://www.nr.com/
http://www.diigo.com/user/jj1bdx/random
http://www.diigo.com/user/jj1bdx/random

